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1. Abstract   
Over the last several decades, wildfire frequency and severity in forested areas along Colorado’s Front Range 
have increased due to a buildup of fuels. This has led to an increase in forest treatments, as well as an 
increased need to evaluate the success of these treatments. Remote sensing products offer an efficient and 
cost-effective way to monitor forest treatments; however, not all remote sensing products and analysis 
techniques have been explored by Coloradan land managers. Specifically, project partners at the Colorado 
State Forest Service (CSFS) and the Colorado Forest Restoration Institute (CFRI) were interested in using an 
effective and streamlined method of mapping canopy cover to better monitor forest treatment success. To 
support their needs, the NASA DEVELOP Front Range Wildland Fires team explored National Agricultural 
Imagery Program (NAIP) imagery at different spatial resolutions and numbers of training points with NASA’s 
Shuttle Radar Topography Mission (SRTM) Data Elevation Model (DEM) as a predictor in addition to NAIP 
imagery spectral predictors. From this analysis, we created classified canopy cover rasters, and compared 
accuracy metrics across model iterations. We also determined that the best performing model, with an overall 
accuracy of 0.900 uses 2021 NAIP imagery at 2-meter resolution, 800 training points, 200 testing points, does 
not use topographic predictors, and reclassifies shadow pixels via a pre-selected NDVI threshold.    
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2. Introduction 
2.1 Background 
Changes in land use, grazing, and fire suppression practices have impaired ecosystem functions on Colorado’s 
Front Range, leading to a build-up of fuel in ponderosa-pine and mixed conifer forests (Larson & Churchill, 
2012). In response, organizations such as the Colorado State Forest Service (CSFS) and the Colorado Forest 
Restoration Institute (CFRI) increased the size and number of forest treatments and forest treatment 
monitoring with goals such as reducing fuel, enhancing landscape heterogeneity, and restoring pre-colonial 
forest conditions (Cannon et al., 2018). Forest monitoring has been vital in assessing the success of these 
treatments but is time consuming and costly. Remote sensing products, however, offer an efficient and 
cost-effective way to monitor different forest treatments. Pairing remote sensing imagery products with 
classification algorithms provided a user-friendly means of detecting changes in canopy cover pre and post 
treatment, but not all remote sensing products are created equal; imagery attributes such as resolution and 
extent are important considerations for project success. While current remote sensing classification 
methodologies derived from Cannon et al. (2021), Dickenson & Pelz (2012), and Ritika et al. (2021) have been 
beneficial, certain aspects could be improved upon. Specifically, the partners expressed that their current 
methods involve the use of discrete lidar collections, which have varying temporal availability, unlike a high 
spatial resolution, regularly released remote sensing dataset like the National Agricultural Imagery Program 
(NAIP). Dickenson &  Pelz (2012) did provide an alternative methodology that utilized imagery with better 
spatial and temporal attributes but was not streamlined in terms of software utilization. Ritika et al. (2021) 
acknowledged that Google Earth Engine (GEE) as a powerful and efficient tool in accessing and processing 
remote sensing data to accomplish image classification with Random Forest, however, their methodologies 
were used to classify land use and land cover, while our project focused on exclusively canopy cover 
classification. This project explored how effectively NAIP imagery could be classified via a Random Forest 
(RF) algorithm across different years, scales, forest types, and shadow classifications exclusively in GEE. 
Specifically, we explored imagery for 2013 and 2021 in the greater Ben Delatour Scout Ranch (BDSR) region 
as well as 2019 imagery for the Upper Monument Creek (UMC; Figure 1) region along the Colorado Front 
Range at a 1m, 2m, and 3m resolution. By adapting methodologies such as those found in previous literature, 
we can provide partners with imagery that has improved spatial and temporal resolution, and spatial extent, 
while streamlining software use. This approach would assist Colorado’s public land managers in more 
efficiently and accurately monitoring forest treatments, giving them more capacity in their monitoring 
capabilities that will improve their adaptive forest management practices. 
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Figure 1: Greater Ben Delatour Scout Ranch (Left) and Upper Monument Creek (Right) study areas 
 
2.2 Project Partners & Objectives 
Our partners for this project include the CFRI and the CSFS. CFRI is a research institute that provides 
scientific knowledge to improve forest management practice for researchers, managers, and stakeholders. 
CSFS is a state governmental agency whose mission is aimed at providing technical expertise and finding new 
approaches to adaptive management in Colorado forests. CFRI currently has a robust remote sensing 
capability for forest treatment monitoring. Using data from the high spatial resolution satellites including 
WorldView-02, GeoEye-01, and Quickbird-02 to monitor canopy cover, they upload their data to ArcGIS Pro 
and rescale to a 3-m resolution before processing their imagery in R. While this approach provides 
meaningful results, CFRI has expressed needs for a more streamlined approach (i.e., completing the entire 
analysis within a single GIS software, like GEE) using imagery with higher spatial and temporal resolution 
and better spatial coverage. CSFS has limited use of remote sensing practices in their treatment monitoring 
and has expressed an interest in building capacity to use more geospatial data. In our partnership with these 
two groups, we supported their objectives by testing different imagery parameters such as image scale, image 
quality, and various pre-processing techniques. We provided a comparison of the strengths and weaknesses of 
these different parameters and evaluate their efficacy in classification. This yielded a tested and reproducible 
methodology that allows our partners to create imagery products that can be effectively classified for canopy 
cover and openings in forests.  
 
3. Methodology 
3.1 Data Acquisition 
To begin our data acquisition, we first created polygon boundaries in GEE for our two study regions: the 
greater BDSR region and UMC region. Next, we acquired NAIP imagery for the years 2013 and 2021 for the 
greater BDSR region and 2019 NAIP imagery for the UMC region. For 2013 and 2019, we acquired the 
NAIP imagery directly from the GEE data catalog. The 2021 NAIP imagery was downloaded for Larimer 
County from the United States Department of Agriculture (USDA) Geospatial Data Gateway. Additionally, 
we acquired a 30-meter resolution NASA Shuttle Radar Topography Mission (SRTM) elevation dataset for 
Colorado directly from GEE's data repository.  
 
Given more time, this project would have additionally analyzed NASA and USGS Landsat 8 & 9 Collection 2 
Tier 1 TOA Reflectance data in addition to NAIP imagery. Given our partner’s desire for imagery with a high 
spatial and temporal resolution, we chose to prioritize NAIP imagery over the spaceborne multispectral data 
in order to focus the project on analysis that aligned with the objective of our partners. NAIP imagery has a 
spatial resolution of 0.8 m and is typically collected every 3 years. With additional time, we would have 
explored using multispectral Landsat 8 & 9 data, which has a 30 m resolution and makes a complete orbit of 
the Earth every 16 days.  
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3.2 Data Processing 
3.2.1 Image Processing 
To process our 2013 and 2019 NAIP imagery, we filtered the NAIP image collection to only include data 
from January 1 – December 31 of the desired years. For both years, we transformed the image collection into 
a single image using the ImageCollection.mosaic() function. After transforming to an image, we used the 
Image.clip(region) function to clip the 2013 and 2019 images to the greater BDSR and UMC regions 
respectively.  
 
To process the 2021 data, we uploaded the entire 2021 true and false color NAIP imagery for Larimer County 
into ArcGIS Pro. We then clipped the data to our study region and changed the geographic coordinate system 
from NAD1983 to WGS1984 to be compatible with GEE. Next, we converted the true and false color raster 
files from a .sid to a .tiff file type in ArcPro as GEE can only ingest .tiff files. Additionally, GEE could only 
accept images under 10 GB; anything greater would require an additional Python API token. Rather than 
uploading the .tiff files for all of Larimer County with the Python API token, we decided to keep our process 
simple for the partners and only upload the 2021 imagery clipped to our study region. We uploaded the 
images as assets in GEE then imported the assets to our project code.  
 
3.2.2 Generating Predictor Variables 
Once we acquired all the necessary NAIP imagery, filtered the data to the correct years, and clipped to the 
study regions, we created spectral predictor variables using NAIP’s red, green, blue, and near infrared (NIR) 
bands. We made variables out of each respective band, then used the red and NIR bands to calculate the 
Normalized Difference Vegetation Index (NDVI), a proxy for vegetation presence and vigor, and simple 
ratio. We also calculated the red:green ratio using the red and green NAIP bands. From the SRTM elevation 
dataset, we derived aspect, slope, northness, and eastness as additional topographic predictors and included 
them in our model.  We tested model performance using both spectral and topographic predictors as well as 
spectral predictors alone. See Table 1 for a full list of predictor variables, predictor type, their corresponding 
sources, and the equations used to calculate them.  
 
Table 1: Predictor Variables List 
Predictor 
Variable 

Predictor 
Type 

Source Equation Reference 

Slope Topographic Derived from 
the digital 
elevation model 

Slope = ee.Terrain.slope(DEM) N/A 

Aspect  Topographic Derived directly 
from the digital 
elevation model 

Aspect = 
ee.Terrain.aspect(DEM).multiply(π/
180) 

N/A 

Northness Topographic Derived from 
the aspect 
variable 

Northness = aspect.cos() N/A 

Eastness  Topographic Derived from 
the aspect 
variable 

Eastness = aspect.sin() N/A 

NIR Spectral Derived directly 
from the NAIP 
imagery  

NIR = NAIP_image.select(‘N’) Zeng, Y. et al. 

Red Spectral Derived directly 
from the NAIP 
imagery 

Red = NAIP_image.select(‘R’) N/A 
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Green Spectral Derived directly 
from the NAIP 
imagery  

Green = NAIP_image.select(‘G’) N/A 

Blue Spectral Derived directly 
from the NAIP 
imagery 

Blue = NAIP_image.select(‘B’) N/A 

NDVI Spectral Calculated using 
NIR and Red 
bands 

 𝑁𝐷𝑉𝐼  =   𝑁𝐼𝑅 − 𝑅𝑒𝑑( )
𝑁𝐼𝑅 + 𝑅𝑒𝑑( )

Kshetri, 2018 

Simple 
Ratio 

Spectral Calculated using 
NIR and Red 
bands 

 𝑆𝑖𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑖𝑜  =   𝑁𝐼𝑅
𝑅𝑒𝑑

Hunt Jr., Daughtry, 
Eitel, Long, 2011 

Red Green 
Ratio 

Spectral 
 

Calculated using 
the red and 
green bands 

 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 𝑅𝑎𝑡𝑖𝑜  =   𝑚𝑒𝑎𝑛 𝑅𝑒𝑑( )
𝑚𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛( ) Bannari, Morin, 

Bonn, Huete, 1995 
 
3.2.3 Generating Different Image Resolutions 
To test how different image resolutions affect model performance, we rescaled the 0.6m NAIP imagery to 
1m, 2m, and 3m using the ImageProjection.atScale(x) function where x is an integer value denoting scale in 
meters. Then, we reprojected the 2013, 2019, and 2021 images to their new projections using the 
Image.reproject({crs, scale}) tool where crs is the coordinate reference system of the projection and scale is 
the scale in meters.  
 
3.2.4 Generating Random Points and Building Appropriate Feature Classes 
With all the predictor variables and image resolutions created, we generated 1,000 random points in the 
greater BDSR study region and 500 random points in the UMC study region using the 
ee.FeatureCollection.randomPoints() function in GEE. We created a 6m buffer around each point to avoid 
repeated sampling. Next, we created point feature collections titled canopy, gap, and shadow, and in each, we 
added a property called Class and assigned each feature collection a unique class value of 1-3, respectively. In 
order for the RF classifier to execute, all separate feature collections needed to be merged into one feature 
collection with different classes. We joined all feature collections together using the 
FeatureCollection1.merge(FeatureCollection2) function in GEE.  
 
3.2.5 Building a Grid and Ocular Sampling 
To classify all random points systematically, we created a grid around our study region using the 
StudyRegion.geometry().coveringGrid() tool. The grid helped us ensure that all random points received a 
classification. We moved through each grid cell and classified the randomly generated points into the canopy, 
gap, and shadow classes via ocular sampling. Our ocular sampling method involved classifying each random 
point using the GEE base satellite map and NAIP true-color and false-color imagery to help determine class. 
To calibrate our eyes as a team, we classified 50 training data points together. The remaining 950 data points 
were then classified by individual team members. 
 
3.2.6 Random Forest Classifier and Training/Testing Data 
Once we generated all classified points for both study regions, we divided the data into training and testing 
points, and fed them into the RF classifier. RF is a machine learning algorithm that classifies image pixels into 
designated classes using the training data and predictor variables defined by the user. We ran the RF classifier 
for 2013, 2019, and 2021 at 1m, 2m, and 3m resolutions varying the number of training points. For 2013 and 
2021, we tested model performance using 100-800 training points, and for 2019, we tested model 
performance using 100-400 training points. The remaining 20% of our classified points were withheld from 
model creation and used as test data. 
 

4 
 

https://www.indexdatabase.de/db/r-single.php?id=695
https://www.indexdatabase.de/db/r-single.php?id=695


 
​  

 
 
Figure 2: Examples classification model output derived from 2013 imagery at 1m, 2m, and 3m resolution. GEE base satellite 
imagery included for comparison.  
 
 
3.2.7 Shadow Reclassification 
One of the parameters we explored was the method of shadow reclassification. To accomplish this, we held 
the image resolution and number of training points constant and tested four different shadow classification 
methods for 2013, and five different shadow classification methods for 2019 and 2021. For 2013, we ran one 
model with no shadow reclassification, retaining canopy, gap, and shadow classifications. We ran another 
model for 2013 where all shadow pixels were reclassified as canopy to produce a two-class model output. We 
ran a third model where all shadow pixels were reclassified as gap, and we ran a final model where all shadow 
pixels were reclassified as either canopy or gap based on their NDVI value. For the final method of 
reclassifying shadow, we generated a histogram of NDVI values for shadow points, determined the mid-point 
in the bimodal distribution of the data, and utilized that value as our threshold for shadow reclassification. All 
shadow points with an NDVI value below that threshold were reclassified as gap and all shadow points above 
that value were reclassified as canopy. CFRI’s existing methodology informed this approach. For 2019 and 
2021, in addition to the four methods of shadow reclassification, we created a fifth classification method: 
manual reclassification. This consisted of manual reclassifying all shadow pixels as canopy or gap using visual 
cues in the imagery. 
 
3.3 Data Analysis 
Using the test data, we generated confusion matrices to evaluate the accuracy of the classified raster maps 
produced by the RF classifier. Once the confusion matrices were generated, we could use the test data 
accuracy metric to compare model performance at different numbers of training points, scale resolutions, 
shadow reclassification methods, predictor variables, and image qualities. Since the clarity, contrast, and image 
brightness increased as the imagery became more current, the 2013 image represents our lowest image quality 
and 2021 represents our highest image quality.  
 
We then created a table that outlines accuracy metrics for each model iteration to systematically compare their 
performance. Accuracy metrics include training accuracy and test accuracy. We used training accuracy as a 
perfunctory check and test accuracy as the metric to indicate model performance. Additionally, we compared 
our 2013 model outputs to a CFRI LiDAR derived raster via percent overall agreement and class agreement. 
While neither model was compared to field validation data, comparing our 2013 model outputs to the LiDAR 
derived raster, we provided our partners with information about how our modeling approach differed from 
their current methodology.  
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4. Results & Discussion 
4.1 Analysis of Results 
4.1.1 Comparing Image Resolutions and Numbers of Training Points 
We determined that image resolution had a minimal effect on the model test accuracy; differences between 
model performance at the 1m, 2m, and 3m resolutions were marginal. Increasing the number of training 
points increased the model test accuracy for both years at all resolutions. For 2013, the 3m resolution models 
performed slightly better than the 1m and 2m models, but at 800 training points, all model resolutions had a 
test accuracy of approximately 0.85 (Figure 3). For 2021, the 2m resolution model performed slightly better 
than the 1m and 3m models, but at 800 points, all model resolutions had a test accuracy of approximately 0.88 
(Figure 3).  For 2013 and 2021, increasing the number of training points improved model accuracy. Moreover, 
as the number of training points increased, model test accuracy continued to increase linearly without 
plateauing, suggesting that we had not yet reached the optimal number of training points.  
 

Figure 3. Model performance across scale and number of training points 
 
4.1.2 Comparing Methods of Shadow Reclassification 2013, 2019, and 2021 
For 2013, reclassifying shadow using an NDVI threshold and reclassifying all shadow pixels as canopy 
performed the best and performing no reclassification performed the worst (Figure 4). For 2021, using an 
NDVI threshold performed the best and performing no shadow reclassification performed the worst (Figure 
4). For 2019, reclassifying all shadow pixels to canopy performed the best (0.83 test accuracy) while classifying 
all shadow pixels to gap and performing no shadow reclassification performed the worst (0.60 test accuracy) 
(Figure 4). There is over a 20-percentage point difference between the best and worst performing models, 
which suggests that shadow reclassification is more significant in forests with more rugged topography such 
as Upper Monument Creek. Note that performing no shadow reclassification retains three classes in the 
model output which inherently has a lower performance compared to two class model output.  
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Figure 4. 2013, 2019, and 2021 model performance with varying shadow reclassification methods 
 
 
4.1.3 Comparing Predictor Variables Used 
For 2013 and 2021, there are minimal differences between the test accuracies of the spectral only models and 
the models run with spectral and topographic predictors (Figure 5). However, for 2019, there are larger 
differences between the test accuracies of the spectral only models and the models run with spectral and 
topographic predictors (Figure 5). The spectral-only models perform better which may suggest that 
topographic predictors may become confounding in regions with more variable topography, such as UMC.  
 

Figure 5. 2013, 2019, and 2021 model performance using different predictor variables 
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4.1.4 Comparing Model Outputs Between Image Qualities (2013 and 2021)  
By comparing the 2021 and 2013 classification outputs for the greater BDSR region, we determined that 
image quality has minimal effect on model accuracy. 2021 NAIP imagery is higher quality, which means that 
canopy pixels can be more easily distinguished from gap pixels. This improved image quality led to less 
difficult decision making when manually classifying points as canopy, gap, or shadow, leading to higher quality 
training and test data. Comparing the 2013 and 2021 model outputs to each other, we determined that there is 
not a significant difference between 2013 and 2021 test accuracy; however, 2021 has a higher average test 
accuracy (0.82) and a higher maximum test accuracy (0.90). It should be noted that the range of model 
performance of 2021 (0.25) is greater than that of 2013 (0.14) (Figure 6).  
 

Figure 6. Model performance across different years 
 
4.1.5 Best Performing Models 
The model with the highest test accuracy for 2013 BDSR was the 1-meter resolution model classified with 
800 training points, an NDVI threshold shadow reclassification, and only spectral predictors. The overall test 
accuracy was 0.863 (Figure 7a). The model with the highest test accuracy for 2021 BDSR was the 1-meter 
resolution model classified with 800 training points, an NDVI threshold shadow reclassification, and only 
spectral predictors. The overall test accuracy was 0.900 (Figure 7b). The model with the highest test accuracy 
for 2019 UMC was the 2-meter resolution model classified with 400 training points, a shadow reclassification 
from shadow to canopy, and both spectral and topographic predictors. The overall test accuracy was 0.790 
(Figure 7c). See Appendix A – Appendix C for all 2013, 2019, and 2021 model iterations and results.  
 

a) b) c)  
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Figure 7. Highest performing models by year and study region a) 2013 BSDR b) 2021 BDSR c) 2019 UMC 
 
4.1.6 Comparison to CFRI LiDAR Data:  
The 2013 model with the best CFRI LiDAR agreement is the 2013 1m model classified using 800 training 
points where all shadow pixels were reclassified to canopy and both spectral and topographic predictors were 
used (Figure 8). It had a 68% overall agreement with the LiDAR classifications and an overall test accuracy of 
0.72. Figure 9 shows the comparison between our 2013 BSDR model and CFRI’s LiDAR data raster map for 
the same area. The cream color represents gap agreement between models, the green represents canopy 
agreement between models, and the black represents disagreement between models (Figure 9). 
 

 
Figure 8. 2013, 1m, 800 training points NDVI ​    Figure 9. CFRI and 2013 Model ​
Shadow Reclassification Model Output​ ​    Agreement/Disagreement​      
 
4.1.7 Errors and Uncertainties 
While our methodology produced meaningful results that we could draw conclusions from, we still 
encountered errors and uncertainties. One of our most prominent sources of error was our assumption that 
the NAIP imagery used was consistent from year to year and site to site. NAIP mosaics are created from 
aerial images whose sensors vary in acquisition times, regions surveyed, and viewing geometries. This affects 
their ability to make consistent and useful classification products. 
  
Another prominent error in our analysis was our treatment of NAIP bands as reflectance. NAIP images do 
not have units. They are simply digital numbers (DNs) that may not be proportional to reflectance and can 
vary from image to image. Our analysis, however, assumed that these bands were consistent and proportional 
to reflectance. This means that the indices applied on different dates are different from each other and that 
none of them are likely to match literature established performance of the indices.  
 
Finally, there were several sources of error and uncertainty pertaining to our classifications, which were done 
manually.  First, the 2013 NAIP imagery was poorer quality as defined by the lower contrast, brightness, and 
clarity compared to the 2021 image. The lower image quality led to difficulty when manually classifying points 
as canopy, gap, or shadow. Because the 2013 image had lower contrast, it was occasionally challenging to 
distinguish between classes. We examined the true and false-color NAIP imagery as well as satellite base 
imagery in GEE to aid in point classification, and while this process was effective, the satellite base imagery 
had a limited zoom extent which led to some uncertainty classifying at the pixel level. There is additional 
uncertainty in our classifications because we classified our training data manually without field validation data. 
While some points had an obvious classification, other points were far less obvious and required a best guess 
from our team when classifying. This means that some points could have been misclassified which would lead 
to inaccuracies in the model. 
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4.2 Future Work 
With additional time, we would have continued our analysis in several ways. First, we would explore 
object-based classifications in which an algorithm groups areas of an image by likeness. Object-based 
classifications could lead to more accurate model classifications compared to the pixel-based classification our 
current methodology uses. We would also test for collinearity and perform a regression analysis on our 
predictors to determine the optimal combination of variables for classification. Next, we would explore 
reclassifying shadows as a post-processing technique rather than a pre-processing technique. Our current 
methodology explored shadow reclassification prior to our images being classified, so we would be interested 
to see how shadow reclassification performs after a three-class model output is produced. We would also 
further explore the areas where our model outputs disagree with CFRI’s LiDAR classification outputs. For 
example, we noticed that disagreement is more common in riparian areas. We would also compare our 2019 
and 2021 model outputs to LiDAR data as an additional accuracy metric. Finally, we would test how our 
model performs at a watershed level to see if the random forest classifier can still produce accurate 
classifications at a larger scale.  
 
5. Conclusions 
This project analyzed the impact that image quality, image resolution, number of training points, methods of 
shadow reclassification, and predictor variables have on model accuracy. We determined that image quality 
had a minimal effect on model performance, with 2021 models performing slightly better. We found minimal 
differences between the test accuracies produced by 1m, 2m, and 3m models, suggesting that image resolution 
had minimal impact on model test accuracy. For the number of training points, we detected a positive 
correlation between model test accuracy and number of training points used for model classification. This 
suggested that higher numbers of training points correspond to a more accurate model. However, we did not 
detect a plateau in model performance as training points increased, suggesting that more training points could 
be added to improve model performance. For shadow reclassification, we determined that any method of 
shadow reclassification is better than no reclassification at all, since all tested methods of shadow 
reclassification performed better than the model where no reclassification was done. Finally, we determined 
that our models performed the best when only spectral variables were used as opposed to both spectral and 
topographic predictors. By exploring how each of these parameters affected model performance, our partners 
will be able to create effective classification rasters. This will save our partners time and effort in the early 
stages of model classification and will allow them to quickly advance into more complex analyses.  
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7. Glossary 
NAIP - National Agricultural Imagery Program 

DEM - Digital Elevation Model  

SRTM - Shuttle Radar Topography Mission 

GEE - Google Earth Engine 

RF - Random Forest Classifier 
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9. Appendices 
Appendix A 

Table A1. All 2013 model iterations and accuracies 

Site Year Resolution Number 
of 
Training 
Points 

Number 
of 
Training 
Classes 

Post 
Processing 
Type 

Training 
Accuracy 

Test 
Accuracy 

Overall 
CFRI 
LiDAR 
Product 
Agreement 

Canopy 
CFRI 
LiDAR 
Product 
Agreement 

Gap CFRI 
LiDAR 
Product 
Agreement 

BSR 2013 1m 800 3 No 
reclass 

0.998 0.716 0.679 0.196 0.483 

BSR 2013 1m 800 2 Shadow 
to Gap 

0.995 0.795 0.664 0.172 0.491 

BSR 2013 1m 800 2 Shadow 
to 
Canopy 

1 0.830 0.669 0.235 0.433 

BSR 2013 1m 800 2 NDVI 
threshold 

0.993 0.862 0.663 0.194 0.468 

BSR 2013 1m 800 2 NDVI 
threshold 

0.995 0.830 0.665 0.192 0.472 

BSR 2013 1m 700 2 NDVI 
threshold 

0.995 0.815 0.664 0.191 0.472 

BSR 2013 1m 600 2 NDVI 
threshold 

1 0.810 0.663 0.187 0.476 

BSR 2013 1m 500 2 NDVI 
threshold 

0.998 0.835 0.666 0.191 0.474 

BSR 2013 1m 400 2 NDVI 
threshold 

1 0.8 0.665 0.190 0.474 

BSR 2013 1m 300 2 NDVI 
threshold 

0.996 0.810 0.666 0.196 0.470 

BSR 2013 1m 200 2 NDVI 
threshold 

0.994 0.774 0.668 0.192 0.476 

BSR 2013 1m 100 2 NDVI 
threshold 

1 0.8 0.665 0.174 0.490 

BSR 2013 2m 800 3 No 
reclass 

0.997 0.740 0.674 0.211 0.463 

BSR 2013 2m 800 2 Shadow 
to Gap 

0.996 0.851 0.661 0.161 0.500 

BSR 2013 2m 800 2 Shadow 
to 
Canopy 

0.998 0.765 0.671 0.238 0.432 

BSR 2013 2m 800 2 NDVI 
threshold 

0.996 0.854 0.664 0.208 0.455 

BSR 2013 2m 800 2 NDVI 
threshold 

0.997 0.807 0.666 0.200 0.465 

BSR 2013 2m 700 2 NDVI 
threshold 

0.997 0.791 0.665 0.200 0.465 
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BSR 2013 2m 600 2 NDVI 
threshold 

0.998 0.817 0.668 0.193 0.474 

BSR 2013 2m 500 2 NDVI 
threshold 

0.997 0.827 0.667 0.181 0.485 

BSR 2013 2m 400 2 NDVI 
threshold 

1 0.781 0.668 0.191 0.476 

BSR 2013 2m 300 2 NDVI 
threshold 

1 0.776 0.664 0.190 0.474 

BSR 2013 2m 200 2 NDVI 
threshold 

1 0.771 0.659 0.199 0.460 

BSR 2013 2m 100 2 NDVI 
threshold 

1 0.761 0.661 0.209 0.452 

BSR 2013 3m 800 3 No 
reclass 

0.991 0.738 0.678 0.198 0.479 

BSR 2013 3m 800 2 Shadow 
to Gap 

0.995 0.744 0.664 0.177 0.487 

BSR 2013 3m 800 2 Shadow 
to 
Canopy 

0.996 0.829 0.670 0.240 0.429 

BSR 2013 3m 800 2 NDVI 
threshold 

0.992 0.808 0.664 0.197 0.467 

BSR 2013 3m 800 2 NDVI 
threshold 

0.996 0.841 0.667 0.193 0.473 

BSR 2013 3m 700 2 NDVI 
threshold 

0.997 0.835 0.666 0.194 0.472 

BSR 2013 3m 600 2 NDVI 
threshold 

0.995 0.835 0.669 0.193 0.475 

BSR 2013 3m 500 2 NDVI 
threshold 

0.997 0.825 0.668 0.201 0.467 

BSR 2013 3m 400 2 NDVI 
threshold 

0.997 0.830 0.666 0.194 0.472 

BSR 2013 3m 300 2 NDVI 
threshold 

1 0.835 0.668 0.186 0.481 

BSR 2013 3m 200 2 NDVI 
threshold 

1 0.830 0.665 0.173 0.492 

BSR 2013 3m 100 2 NDVI 
threshold 

1 0.830 0.670 0.164 0.505 
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Appendix B 

Table B1: All 2021 model iterations and accuracies 

Site Year Resolution Number of 
Training 
Points 

Number of 
Training 
Classes 

Post Processing Type Training Accuracy Test Accuracy 

BSR 2021 1m 800 3 No reclass 0.990 0.677 

BSR 2021 1m 800 2 Shadow to Gap 0.996 0.798 

BSR 2021 1m 800 2 Shadow to Canopy 0.999 0.773 

BSR 2021 1m 800 2 Manual 
Reclassification 

0.996 0.781 

BSR 2021 1m 800 2 NDVI threshold 0.991 0.900 
BSR 2021 1m 800 2 NDVI threshold 0.997 0.849 
BSR 2021 1m 700 2 NDVI threshold 0.999 0.839 
BSR 2021 1m 600 2 NDVI threshold 0.996 0.834 
BSR 2021 1m 500 2 NDVI threshold 0.998 0.829 
BSR 2021 1m 400 2 NDVI threshold 0.998 0.815 
BSR 2021 1m 300 2 NDVI threshold 1.000 0.820 
BSR 2021 1m 200 2 NDVI threshold 1.000 0.776 
BSR 2021 1m 100 2 NDVI threshold 1.000 0.800 
BSR 2021 2m 800 3 No reclass 1.000 0.653 

BSR 2021 2m 800 2 Shadow to Gap 0.996 0.775 

BSR 2021 2m 800 2 Shadow to Canopy 0.998 0.769 

BSR 2021 2m 800 2 Manual 
Reclassification 

0.998 0.740 

BSR 2021 2m 800 2 NDVI threshold 0.994 0.869 
BSR 2021 2m 800 2 NDVI threshold 0.996 0.871 
BSR 2021 2m 700 2 NDVI threshold 0.999 0.876 
BSR 2021 2m 600 2 NDVI threshold 1.000 0.854 
BSR 2021 2m 500 2 NDVI threshold 0.997 0.865 
BSR 2021 2m 400 2 NDVI threshold 1.000 0.854 
BSR 2021 2m 300 2 NDVI threshold 1.000 0.865 
BSR 2021 2m 200 2 NDVI threshold 0.990 0.837 
BSR 2021 2m 100 2 NDVI threshold 1.000 0.860 

BSR 2021 3m 800 3 No reclass 1.000 0.675 

BSR 2021 3m 800 2 Shadow to Gap 0.999 0.773 
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BSR 2021 3m 800 2 Shadow to Canopy 0.999 0.793 

BSR 2021 3m 800 2 Manual 
Reclassification 

0.998 0.816 

BSR 2021 3m 800 2 NDVI threshold 0.995 0.890 
BSR 2021 3m 800 2 NDVI threshold 1.000 0.847 
BSR 2021 3m 700 2 NDVI threshold 0.997 0.849 
BSR 2021 3m 600 2 NDVI threshold 0.996 0.852 
BSR 2021 3m 500 2 NDVI threshold 0.994 0.852 
BSR 2021 3m 400 2 NDVI threshold 0.998 0.842 
BSR 2021 3m 300 2 NDVI threshold 0.994 0.857 
BSR 2021 3m 200 2 NDVI threshold 0.995 0.775 
BSR 2021 3m 100 2 NDVI threshold 1.000 0.813 
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Appendix C 

Table C1. All 2019 (Upper Monument Creek) model iterations and accuracies 

Site Year Resolution Number 
of 
Training 
Points 

Number of 
Training 
Classes 

Post Processing Type Training Accuracy Test Accuracy 

UMC 2019 1m 400 3 No reclass 0.995 0.586 

UMC 2019 1m 400 2 Shadow to Gap 1 0.604 

UMC 2019 1m 400 2 Shadow to Canopy 1 0.83 

UMC 2019 1m 400 2 Manual 
Reclassification 

0.990 0.766 

UMC 2019 2m 400 3 No reclass 0.997 0.602 

UMC 2019 2m 400 2 Shadow to Gap 0.998 0.663 

UMC 2019 2m 400 2 Shadow to Canopy 1 0.79 

UMC 2019 2m 400 2 Manual 
Reclassification 

1 0.789 

UMC 2019 3m 400 3 No reclass 0.998 0.646 

UMC 2019 3m 400 2 Shadow to Gap 0.992 0.575 

UMC 2019 3m 400 2 Shadow to Canopy 0.995 0.865 

UMC 2019 3m 400 2 Manual 
Reclassification 

0.989 0.909 

UMC 2019 3m 400 2 NDVI threshold 1 0.759 
UMC 2019 2m 400 2 NDVI threshold 0.992 0.776 
UMC 2019 1m 400 2 NDVI threshold 0.995 0.723 
UMC 2019 3m 400 2 NDVI threshold 0.995 0.873 
UMC 2019 2m 400 2 NDVI threshold 0.997 0.86 
UMC 2019 1m 400 2 NDVI threshold 0.99 0.894 
UMC 2019 2m 300 2 NDVI threshold 0.996 0.757 
UMC 2019 2m 200 2 NDVI threshold 1 0.776 
UMC 2019 2m 100 2 NDVI threshold 1 0.786 
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